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ABSTRACT 

The main objective of this paper is to introduce another type of fully cancellation (denoted it F-Cancellation) 

module, namely prime –Fully Cancellation (denoted as PFC-Module), and we study the relationships btween these two 

concepts. We investigate some results of such modules. 
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1. INTRODUCTION 

Throughout this paper, all rings are commutative with identity and all modules are unitary.                                      

Let M be an R-module. Then, M is said to be fully cancellation module,. f for each ideal I of R and for each submodules 

N1, N2 of M such that, IN1=IN2 implies N1=N2 [1]. In this case, if for every non-zero maximal ideal I of R and for every 

submodules N1and N2 of M such that IN1=IN2, then N1=N2 and we call it maximal –fully cancellation module                 

(denoted it by the symbol MFC-Modul [2]. Now in this paper, we define the concept of prime –Fully cancellation            

(denote it by the symbol PFC-Module), we give some equivalent conditions for a PFC-Modul. 

Also, we will find some relations between max-fully cancellation module and PFC-Module. 

2. MAIN RESULTS 

Definition (2.1) 

Let M be a R-module. M is called PFC-Module for every non zero prime ideal I of R and for every submodules 

N1, N2 of M such that IN1=IN2, then N1=N2. 

Remarks and Examples (2.2) 

(1) Z as the Z - module is a PFC - Module. 

(2) Z6 as a Z6-module is not PFC-Module.Since (3)��� is prime ideal of Z6 and (3)��� , Z6 are submodules of Z6 such 

that (3)��� (3)���=(3)���Z6 Z s not prime-fully motion by the symbol MFC-Modul but (3)���≠ Z6. 

(3) Every full cancellation module is a PFC - Module, but the converse is not true in general for example:- 

Let R =Z24 and M=(3)��� as an R-module ,since (2)��� is prime ideal of Z24 and (9)��� ,(21)����� are two submodules of 

(3)���Such that (2)���(9)���= (2)���(21)�����=(18)����� .Then (9)��� = (21)����� .Whil it is not fully cancellation R-module. Since (8)��� is a nonzero 

ideal of Z24 and (3)��� ,(0)��� are two submodules of (3)��� Such that (8)���(3)���= (8)���(0)���= (0)��� ,but (3)���≠(0)���. 

(4) Every submodule of a PFC-Module is a PFC - Module. 

(5) Let M1and M2 be an R-modules such that M1 (M2.Then M1 is a PFC - module if and only if M2 is                     
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PFC-Module. 

The Following Theorem is a Characterization of PFC-Module: 

Theorem (2.3) 

Let M be an R-module, let N1, N2are two submodules of M, let I be a non zero prime ideal of R, then the 

following statements are equivalent:- 

(1) M is an MFC - Module. 

(2) if IN1⊆IN2, then N1⊆N2. 

3) if I≺a≻⊆IN2, then a∈N2where a∈M. 

(4) (IN1∶R IN2 )=(N1∶R N2)  

Proof 

1) ⇒ (2) If IN1⊆IN2 then IN2=IN1+ IN2 Which Implies IN2=I(N1 +N2),  

But M is PFC-Module, then N2 = (N1+N2) and hence N1⊆N2 

If I≺a≻⊆IN2 then ≺a≻⊆N2 by (2) Which implies, a∈N2. (2)⇒ (3) 

(3) ⇒ (4) If IN1= IN2, To prove that N1= N2. Let a∈N1 then I≺a≻⊆IN1⊆IN2And hence a∈N2 by (3) Similarly , 

we can show N2⊆N1. Thus N1 =N2.  

(1) ⇒ (4) Let r∈( IN1:R IN2),.Then r IN2⊆IN1 So, IrN2⊆IN1 and since (1) implies (2), we have N2⊆N1. 

Thus r∈(N1:_RN2) and hence (IN1:R IN2)⊆(N1: RN2) 

Let r∈(N1: RN2). Then rN2⊆N1 which implies IrN2⊆IN1 and hence rIN2⊆IN1 .  

Therefore r∈( IN1:RIN2) and hence (N1:RN2) ⊆( IN1:RIN2) . Then we get (N1: RN2 (  =) IN1:RIN2) 

(4)⇒(1) 

Let IN1= IN2 Then by (4) ( IN1:R IN2) = (N1:RN2). But ( IN1:R IN2)=R 

(Since IN1= IN2). Then (N1:R N2) =R so N2⊆N1. Similarly ( IN2:R IN1) =(N2: RN1) 

Thus (N2:R N1) =R Which implies N1⊆N2. Therefore N1=N2.  .  

Before we give our proposition, the following concepts are needed. 

A ring R is called a Boolean ring, in case, each of its elements is an idempotent. And, a commutative ring R with 

unity is called an Artinian ring, if and only if for any descending chain of ideals I1⊇I2⊇I3⊇…….. of R ∃n∈Z+ such that 

In=In+1 =……. [3] 

Now, the following proposition gives the relationship betweenMFC-Module and PFC-Module. 

Proposition (2.4) 

Every PFC-Module is max-fully cancellation module  
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Proof 

It is easy 

The converse of proposition (2.4) is true under the condition that the ring R is PID or regular or Artinian or 

Boolean ring. 

Proposition (2.5) 

Let R be a PID (regular or Artinian or Boolean) and M be an R-module.  

Then, is PFC-Module if and only if M is MFC-Module.  

Proof 

It is obvious 

Proposition (2.6) 

Let M be a MFC-Module over a ring . If M is a cancellation module, then every non zero maximal ideal of R is 

cancellation ideal. 

Proof 

Let I be a nonzero maximal ideal of R, such that AI=BI, where A, B is two ideals of R. Now, we have AIM=BIM, 

then IAM=IBM. But M is an MFC - Module,  

Therefore, AM=BM. As M is cancellation module, then A=B by [4]. 

Proposition (2.7) 

Let M, N be two R-modules. If M≅N, then M is PFC-Module if 

and only if N is a PFC - Module. 

Proof 

Let θ: M⟶N be an isomorphism. Suppose M is a MFC-Module 

To prove N is a MFC-Module, 

For every non zero prime ideal I of R and every submodules N1, N2 of N.Let IN�����=IN����� 

Now, there exists two submodules N1, N2 of M such that θ (N1) = N����� , θ(N2)= N����� 

Then I θ(N1) = I θ(N2) ,, Which implies θ(I N1)= θ(I N2). Therefore IN
1
 = IN2 

since θ is (1-1))But M is PFC-Module. Then N1=N2 and hence 

θ(N1)= θ(N2) Therefore N����� = N����� That is N is PFC-Module. 

Conversely 

Suppose that N is PFC-Module over the a ring. Let IN1 = IN2 for every non Zero prime ideal I of R and every 

submodules N1, N2 of M. Now, θ(I N1)= θ(I N2). Which implies I θ(N1)= I θ(N2), where θ(N1), θ(N2) are two submodules of 

N 
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Also N is a PFC - Module. Then θ(N1)= θ(N2) Which implies N1=N2 

since θ is (1-1)) Which completes the proof. 

CONCLUSIONS 

This study was conducted to introduce a different type of fully cancellation module, denoted as F-Cancellation, 

namely, prime–Fully Cancellation (denoted as PFC-Module). The relationship between the two concepts were investigated 

on these modules, and the results have been presnetd in this paper. 
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